Transient Natural Convection in an Enclosure with Variable Thermal Expansion Coefficient and Nanofluid Properties
author
Abstract:
Transient natural convection is numerically investigated in an enclosure using variable thermal conductivity, viscosity, and the thermal expansion coefficient of Al2O3-water nanofluid. The study has been conducted for a wide range of Rayleigh numbers (103≤ Ra ≤ 106), concentrations of nanoparticles (0% ≤ ϕ ≤ 7%), the enclosure aspect ratio (AR =1), and temperature differences between the cold and hot walls (∆T= 30). Transient parameters such as development time and time-average Nusselt number along the cold wall are also presented as a non-dimensional form. Increasing the Rayleigh number shortens the non-dimensional time of the initializing stage. By increasing the volume fraction of nanoparticles, the flow development time shows different behaviors for various Rayleigh numbers. The non-dimensional development time decreases by enhancing the concentration of nanoparticles.
similar resources
Effect of Variable Thermal Expansion Coefficient and Nanofluid Properties on Steady Natural Convection in an Enclosure
Steady state natural convection is numerically investigated in an enclosure using variable thermal conductivity, viscosity and thermal expansion coefficient of Al2O3–water nanofluid. This study has been conducted for a wide range of Rayleigh numbers (103≤ Ra ≤ 106), concentrations of nanoparticles (0% ≤ Φ ≤ 7%), enclosure aspect ratios (0.5 ≤ AR ≤ 2) and temperature differences between the cold...
full textMHD Natural Convection and Entropy Generation of Variable Properties Nanofluid in a Triangular Enclosure
Natural convection heat transfer has many applications in different fields of industry; such as cooling industries, electronic transformer devices and ventilation equipment; due to simple process, economic advantage, low noise and renewed retrieval. Recently, heat transfer of nanofluids have been considered because of higher thermal conductivity coefficient compared with those of ordinary fluid...
full textmhd natural convection and entropy generation of variable properties nanofluid in a triangular enclosure
natural convection heat transfer has many applications in different fields of industry; such as cooling industries, electronic transformer devices and ventilation equipment; due to simple process, economic advantage, low noise and renewed retrieval. recently, heat transfer of nanofluids have been considered because of higher thermal conductivity coefficient compared with those of ordinary fluid...
full textThe Effect of Variable Properties on Rayleigh-Benard Convection in an Enclosure Filled with Al2O3-EG-Water Nanofluid
In this paper, the natural convection heat transfer of Al2O3-EG-water nanofluid in a rectangular cavity which is heated from the bottom and is cooled from the top has been investigated numerically. The governing equations for a Newtonian fluid have been solved numerically with a finite volume approach using the SIMPLER algorithm. The main focus of the current study is on the effects of variable...
full textMixed Convection of Variable Properties Al2O3-EG-Water Nanofluid in a Two-Dimensional Lid-Driven Enclosure
In this paper, mixed convection of Al2O3-EG-Water nanofluid in a square lid-driven enclosure is investigated numerically. The focus of this study is on the effects of variable thermophysical properties of the nanofluid on the heat transfer characteristics. The top moving and the bottom stationary horizontal walls are insulated, while the vertical walls are kept at different constant temperature...
full textNumerical Study of Mixed Convection in a Lid-Driven Enclosure with a Centered Body Using Nanofluid Variable Properties
In the present study, mixed convection laminar flow around an adiabatic body in a Lid-driven enclosure filled with nanofluid using variable thermal conductivity and variable viscosity is numerically investigated. The fluid around the body in the enclosure is a water- based nanofluid containing Al2O3 nanoparticles. The Vertical enclosure’s walls are maintained at constant cold temperature an...
full textMy Resources
Journal title
volume 4 issue 3
pages 133- 139
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023